ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE ELECTRONICS AND COMPUTER ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS

Course Title	Code	Semester	T+L Hours	Credit	ECTS
GEOMETRICAL OPTIC	ECE-521	FALL-SPRING	3 + 0	3	7,5

Prerequisite Courses None

Туре	Selective		
Language	English		
Coordinator	Assoc. Prof. Ibrahim Ozdur		
Instructor	Assoc. Prof. Ibrahim Ozdur		
Adjunt	none		
Aim	Learning the principles of fiber optic communication systems and components		
Learning Dutcomes Learning Outcomes Learning Outcomes Learning the Interference, diffraction and polarisation Learning the dispersion and aberration Learning the properties of laser beam Learning the optical resonators and applications			
Course Content	 Beam optics and Fermats' law Dispersion and aberration Gaussian beams Interference, diffraction and polarisation Lasers Optical resonators 		

Week	Topic	Preliminary Study
1	Fundamental concepts	The relevant articles from the literature
2	Beam optics and Fermats' law	The relevant articles from the literature
3	Aberration in optical systems	The relevant articles from the literature
4	Gaussian beams	The relevant articles from the literature
5	Gaussian beam propagation	The relevant articles from the literature
6	Single and double slit interference	The relevant articles from the literature
7	Polarization	The relevant articles from the literature
8	Optical resonators	The relevant articles from the literature
9	Application of optical resonators	"
10	Midterm	The relevant articles from the literature
11	Photon-atom interactions	The relevant articles from the literature
12	Laser types and properties	The relevant articles from the literature
13	Electro-optical devices	The relevant articles from the literature
14	Acousto-optical devices	The relevant articles from the literature
15	Modulation of light	The relevant articles from the literature
16	Final Exam	

SOURCES	
Lecture Notes	Lecture slides
Other Sources	Course Textbook: "Fundamentals of Photonics", Bahaa E. A. Saleh, Malvin Carl Teich, 2 nd Edition, Wiley Additional Materials: 1. "Photonics: Optical Electronics in Modern Communications", Amnon Yariv, Pochi Yeh, 6 nd Edition, 2006, Oxford Series in Electrical and Computer Engineering

COURSE MATERIALS SHARING				
Documents	Lecture notes, slides and molecular model set			
Homeworks	Students will be given one homework each two weeks			
Exams	1 Midterm and 1 Final Exam			

EVALUATION SYSTEM						
SEMESTER STUDY	NUMBER	CONTRIBUTION				
Midterm	1	20				
Homework	7	25				
Quiz	7	25				
SUB-TOTAL		70				
Contribution of Semester Study		70				
Contribution of Final Exam	1	30				
TOTAL		100				

Course Category	
Sciences and Mathematics	30%
Engineering	70%
Social Sciences	0%

RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS						
	No Program Qualifications		Contribution Level			
INO			2	3	4	5
1	Ability to use math, science and engineering knowledge in advanced research				Χ	
2	Ability to design, realize and analyze a novel system to solve engineering problems					x
3	To be able to use modern measurement equipment, hardware and software for expertise area research				X	
4	Ability to plan and do detailed independent research					x
5	Ability to do literature search, technical presentation, and prepare scientific manuscript					x
6	Be able to do critical and creative thinking and finding innovative methods					X

^{*}Increasing from 1 to 5.

ECTS / WORK LOAD TABLE Duration Total Wo						
Activities	Number	(Hours)	Load			
Course Length (includes exam weeks: 16x total course hours)	16	3	48			
Out-of-class Study Time (Pre-study, practice)	16	5	90			
Internet search, library work, literature search	16	4	64			
Presentation	1	21	21			
Homework	8	8	64			
Midterm	1	15	15			
Final Exam	1	20	20			
Total Work Load			322			
Total Work Load / 30			322/30			
Course ECTS Credit			7,5			